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Abstract. We consider boundaries of planar objects as level set dis-
tance functions and present a Riemannian metric for their comparison
and analysis. The metric is based on a parameterization-invariant frame-
work for shape analysis of quadrilateral surfaces. Most previous Rieman-
nian formulations of 2D shape analysis are restricted to curves that can
be parameterized with a single parameter domain. However, 2D shapes
may contain multiple connected components and many internal details
that cannot be captured with such parameterizations. In this paper we
propose to register planar curves of arbitrary topologies by utilizing the
re-parameterization group of quadrilateral surfaces. The criterion used
for computing this registration is a proper distance, which can be used
to quantify differences between the level set functions and is especially
useful in classification. We demonstrate this framework with multiple
examples using toy curves, medical imaging data, subsets of the TOSCA
data set, 2D hand-drawn sketches, and a 2D version of the SHREC07
data set. We demonstrate that our method outperforms the state-of-the-
art in the classification of 2D sketches and performs well compared to
other state-of-the-art methods on complex planar shapes.

1 Introduction

Shape is an important feature for characterizing objects in various fields of sci-
ence. Analyzing objects based on their shapes and modeling the variability they
exhibit within and across classes are fundamental problems in computer vision
and pattern recognition. There has been an increasing interest in using Rie-
mannian frameworks for shape analysis of objects because of the breadth of
tools that they offer. First, they allow one to remove all of the shape preserving
transformations from the representation space. Second, they allow for comput-
ing statistics (e.g. means, covariances, modes of variation) of shapes. However,
most of this work is limited to shape analysis of the outer boundaries of objects,
i.e. curves [1–3] and surfaces [4–6]. There are very few papers that study both
shape boundaries and their interiors. Fuchs [7] considers such a case but their
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(a) Subcortical structures (b) 2D sketch data set [8] (c) Arbitrary shapes
in the brain from SHREC07 [9]

Fig. 1. Examples of planar shapes of arbitrary topology, which may contain multiple
parts and complex internal features.

approach is not invariant to re-parameterization and also only considers shapes
of the same topology.

In this paper, we propose a novel framework for analyzing shapes of planar
objects of arbitrary topologies that can have multiple components as shown in
Fig. 1. We propose to represent planar objects as level sets of their Euclidean
distance functions. We consider each such function along with its smoothed gra-
dient as an image f : [0, 1]2 → R

3. We thus formulate the problem of analyzing
curves as a problem in image analysis, and adapt a recently proposed Riemannian
framework developed for statistical shape analysis of quadrilateral surfaces to the
problem at hand. This framework is especially useful in registering multiple (non-
intersecting) curves or curves with differing topologies. The registration step is
very important in shape analysis as it allows one to generate meaningful com-
parisons of shape, where similar features are optimally matched across objects.
Furthermore, the proposed registration criterion is a proper parameterization-
invariant distance between images, and thus has nice mathematical properties.
Such a framework, in principle, also allows one to perform subsequent statisti-
cal analysis of such objects such as computing their sample statistics. While at
this stage we do not provide a setting for computing geodesic paths and proper
statistics in this framework (future work), we display linear interpolations be-
tween registered shapes which can be used to asses the computed distances and
registrations. We demonstrate this framework with multiple examples on toy
shapes and real data from medical imaging and graphics. We also provide shape
classification results on two very complex data sets: 2D sketches [8] and a 2D
version of the SHREC07 data set [9]. We show that our framework performs well
compared to state-of-the-art feature-based methods on the SHREC07 data set
and significantly outperforms the state-of-the-art on the sketch data set. Note
that feature-based methods are unable to perform subsequent statistical analysis
such as computing shape means or covariances.

Related work. The concept of shape spaces with an associated metric was first
proposed by Kendall [10] and then further developed by Dryden and Mardia [11].
In those frameworks, shapes were represented with a set of landmark points
in the Euclidean space and compared using a Riemannian framework on the
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representation space of such objects. The main drawback of this approach is that
the landmarks have to be detected and labeled before one can analyze the shapes.
Alternatively, one can look at curves as continuous objects and represent them
as elements of infinite-dimensional Riemannian manifolds. Zahn and Roskies [12]
performed Fourier analysis on angle functions of arc-length parameterized curves.
However, restricting the analysis to arc-length parameterized curves can be very
limiting in practice. It is generally accepted that a better approach is to search
for optimal parameterizations using a proper distance. Younes [1] and Younes et
al. [2] defined parameterization-invariant Riemannian metrics on shape spaces of
planar curves. Along this line of research, Klassen et al. [13] introduced a family
of elastic metrics that quantify the relative amounts of bending and stretching
needed to deform planar, closed curves into each other. Joshi et al. [14] extended
this framework to curves in R

n. Later on, Srivastava et al. [3] proposed a special
representation of planar curves, called the square-root velocity function (SRVF),
which simplifies the computation of geodesics and geodesic distances between
curves. The use of this representation chooses a specific instance of the elastic
metric by fixing the parameters that control the bending and stretching energies.

The main limitation of these works is that they are based on a 1D parame-
terization of curves and thus only single boundaries of objects can be analyzed.
There are few works that are able to analyze groups of curves simultaneously or
curves of differing topologies. Fuchs et al. [7] handle the interior of the shapes
instead of only the shape boundary. Thus, this framework is naturally defined
for multiple components. However, it requires the topology to stay the same
during the evolution, which can be limiting in real applications. In addition, this
method is not invariant to re-parameterization. Kerr et al. [15] developed sta-
tistical models for multiple closed planar curves in a parameterization-invariant
framework, but it cannot handle objects of differing topologies.

Another common representation of shape is using distance functions and
their level sets [16], which can represent shapes of arbitrary topologies. For ex-
ample, to register planar shapes, Paragios et al. [17] used Euclidean distance
transforms while Munim and Farag [18] and Fahmi and Farag [19] used vector
distance function-based representations. These three papers, however, assume
that the global alignment between a pair of shapes can be solved by finding the
optimal translation, rotation and anisotropic scaling between the shapes. Thus,
these approaches are not applicable to shapes that undergo large articulated and
elastic motions, such as the ones we consider in this paper. Although Yezzi and
Saoto [20] used level sets, their approach is limited to planar shapes composed
of a single closed curve. Also, while these methods are invariant to translation,
rotation, and global scaling, none of them is invariant to re-parameterization.

There is a series of related work on Large Deformation Diffeomorphic Metric
Mapping (LDDMM) [21] where planar objects of interest (curves, landmarks,
etc.) are embedded in a 2D domain and the full domains are matched and com-
pared. This type of approach is similar in flavor to the proposed work, but
the matching and comparison are performed differently. The LDDMM approach
searches for a geodesic between the two images in the group of diffeomorphisms
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with an additional data matching term. In the proposed approach, the distance
is computed on the space of level set functions modulo re-parameterization.

Another set of approaches represent complex shapes using point sets and
compare them using the Hausdorff distance [22, 23] or the symmetric area dif-
ference [24], which do not require a 1D parameterization of the objects. While
these methods have proven very useful in a number of tasks including partial
object matching, they often do not allow for elastic deformations between the
objects of interest. Several other papers used shape descriptors to compare 2D
and 3D objects [25–30]. The Inner Distance-based Shape Context (IDSC) of Ling
and Jacobs [25] is robust to articulated motion and aware of inner holes in the
shapes. This descriptor, however, works on closed planar shapes, with a single
connected component and with clearly defined interior regions. Our approach
does not have this restriction and can even handle stroke-based drawings, such
as human-drawn sketches, as demonstrated in the experimental results section.

Overview and contributions. We propose to represent planar objects as level
sets of distance functions. To compare these functions, we adapt a recent frame-
work for shape analysis of quadrilateral surfaces proposed in [31], which provides
a recipe for generating parameterization-invariant comparisons between shapes
of surfaces. We utilize the same metric but adapt it to our problem. A similar
approach was taken by Xie et al. [32] in the context of image registration. In ad-
dition to parameterization, we remove variability due to other shape preserving
transformations such as translation, scale and rotation. Our contributions can
be summarized as follows:

1. We formulate the problem of performing computations on the space of planar
objects of arbitrary topology as the problem of analyzing their associated
level set distance functions. For this purpose, we utilize the square root func-
tion transformation of surfaces. To the best of our knowledge, this is the first
time that a parameterization-invariant framework (where optimal registra-
tions are computed) is being proposed for the analysis of planar objects of
arbitrary topology using the distance function representation.

2. We demonstrate this framework with several examples using toy shapes and
real data such as medical images, 2D sketches, and 2D projections of natural
and manmade 3D shapes. We consider examples involving multiple simple
planar closed curves and planar curves with different topologies.

3. We demonstrate the utility of the proposed distance in two shape classifica-
tion studies and show that it performs well compared to the feature-based
state-of-the-art methods for analyzing such data. In particular, we show
that the classification performance of the proposed framework outperforms,
by more than 13%, the state-of-the-art on the hand-drawn sketches of Eitz
et al. [8], suggesting that the proposed framework is suitable for the analysis
of complex shapes that do not have clearly-defined interior regions.

The rest of this paper is organized as follows. In Section 2, we provide details
of the mathematical framework we will use to analyze shapes of complex pla-
nar contours with arbitrary topologies. In particular, we discuss how different
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shape preserving transformations are removed from the representation space. In
Section 3, we present comparison and classification results on different types of
data. We conclude in Section 4 and outline directions for future work.

2 Mathematical Framework

Several past papers have considered a planar object as a parameterized curve
β : D → R

2, whereD is a certain domain for the parameterization (e.g.D = [0, 1]
for open curves or D = S

1 for closed curves). Unfortunately, using such a repre-
sentation does not allow one to analyze shapes with interior details or multiple
components as those shown in Fig. 1. For this purpose, we propose to utilize
the level set function representation (e.g. Euclidean distance transform), which
we will refer to as ψ. That is, in our framework ψ : [0, 1]2 → R, and the ob-
ject β is defined as its zero-level (isocontour) set. In this paper, we propose to
adapt a recently developed framework for statistical shape analysis of parame-
terized quadrilateral surfaces to the problem of registering and comparing level
set representations of planar shapes with arbitrary topologies and multiple com-
ponents. To do this, we build on the Riemannian framework proposed by Kurtek
et al. [31]. A major advantage of this framework is that it searches for optimal
parameterizations of the given objects using a parameterization-invariantmetric.
We take advantage of this useful property in the proposed framework.

2.1 Translation, Scaling and Rotation Variability

The notion of shape is invariant to translation, scaling, rotation and re-parameterization.
In this section, we provide details of how we remove some of these variabili-
ties from the representation space. We assume that the data is originally given
as a binary image, I : [0, 1]2 → {0, 1}. If the data is not given in this form,
we begin by computing its binary image representation. For simplicity, we re-
move the translation and scaling variabilities at this stage using normalization.
The area of an object present in a binary image can be computed using its ze-
roth moment, A =

∫

[0,1]2
I(s)ds where s = (x, y) are the image coordinates.

The centroid of a binary image can be computed using the first moments,
(x̄, ȳ) = 1

A
(
∫

[0,1]2 xI(s)ds,
∫

[0,1]2 yI(s)ds). Thus, we first translate the object in

the image such that its centroid has coordinates (x̄, ȳ) = (0.5, 0.5). Once cen-
tered, we normalize the scale of the object in the image by rescaling it to occupy
a certain proportion of the area of the entire image. Note that this proportion is
chosen based on the application of interest and affects the distance calculation.
Thus, the computed distances are comparable within data sets but not across
data sets. While, in principle, we could choose the same scale for all types of
data (making all the distances comparable) this is not very practical when the
objects of interest are very different across applications (see for example the 2D
sketches vs. the medical imaging data). In both steps, we utilize nearest neighbor
interpolation and a very high image resolution (1000× 1000 pixels) to preserve
all of the details of the given objects. These two steps ensure that our analysis is
invariant to translation and rescaling of the objects present in the given images.



6 Kurtek et al.

While we could also normalize the orientation of the objects at this stage using
the second moment, this approach can be unstable in practice. That is, for a
small perturbation of the object the rotational alignment can change drastically.
Thus, we take a different approach where we exhaustively search for the optimal
rotation in a pairwise manner using the level set function representation.

Given two normalized binary images, I1 and I2, we are interested in comput-
ing the rotational alignment of the objects present within. We proceed as follows.
First, we compute their corresponding signed distance function representations
on the unit disk (D) domain: ψ̃1, ψ̃2 : D → R. Second, we generate a set of
area preserving diffeomorphisms by rotating the initial disk parameterization by
a set of angles θ ∈ [0, 2π). Call this set H. In our implementation, we utilize
360 equally spaced angles. Thus, the set H contains 360 initial grid alignments.
Next, we exhaustively search for the optimal rotation that best aligns the two
signed distance functions using ĥ = argminh∈H ‖ψ̃1− ψ̃2 ◦h‖, which corresponds

to an angle of rotation θ̂. Finally, we apply this rotation to the second binary
image to result in Î2.

2.2 Square Root Representation of Level Set Functions

In order to optimally register two shapes with arbitrary topologies or multiple
components and compute the distance between them, we adapt the framework
of Kurtek et al. [31], which was defined and used for statistical shape analysis of
quadrilateral surfaces. Let ψ be the distance transform of a binary image I. We
first define a new function f = (∇ψ, ψ)T : [0, 1]2 → R

3, where ∇ψ is a smoothed
gradient of the level set distance function ψ. With a slight abuse of notation
we will refer to f as the level set function from now on. In our implementation,
we smooth the gradient using a Gaussian filter. The gradient of the level set
function provides important edge features of the objects of interest, which will
be useful during the registration process. We let F represent the space of all such
level set functions: F = {f : [0, 1]2 → R

3|f is differentiable almost everywhere}.
Let Γ be the set of all diffeomorphisms of [0, 1]2. Γ acts on F by composition:
(f, γ) → f ◦ γ. One can define the standard L

2 inner product on this space
and utilize the resulting Riemannian structure for comparing level set functions.
Unfortunately, the L2 Riemannian metric is not invariant to re-parameterizations
(because ‖f1−f2‖ 6= ‖f1◦γ−f2◦γ‖) and thus cannot be used. Kurtek et al. [31]
suggest an alternative approach based on a different representation termed the
square root function. We present some details next.

Given a function f , its square root function (SRF) representation q : [0, 1]2 →
R

3 is defined as

q(s) =
√

|n(s)|f(s), (1)

where | · | denotes the Euclidean norm in R
3, and n(s) = ∂f

∂x
(s) × ∂f

∂y
(s). The

resulting space of SRFs is a subset of L2([0, 1]2,R3), from now on simply referred
to as L2. If a level set function f is re-parameterized to f ◦ γ, its corresponding
SRF changes to (q, γ) = (q◦γ)

√

Jγ , where Jγ is the determinant of the Jacobian
of γ. Given this new representation, it is easy to check that given two SRFs q1
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(a) Two simple shapes of arbitrary topology: d([q1], [q2]) = 7.9863.

(b) Brain structures as multiple components; d([q1], [q2]) = 6.1829.

(c) Synthetic human face. d([q1], [q2]) = 6.645.

Fig. 2. Linear deformation path between the most left and the most right level set
functions. The zero-level set is highlighted in black. (The figure is best viewed in color.)

and q2 we have ‖q1 − q2‖ = ‖(q1 ◦ γ)
√

Jγ − (q2 ◦ γ)
√

Jγ‖. This property ensures
that our framework is invariant to re-paramterizations of the level set functions.
Thus, we will utilize the SRF representation and the natural L2 metric to register
and compute distances between level set functions, which represent the complex
planar objects of interest.

2.3 Registration and Distance Calculation

We have already removed the translation, scale, and rotation variabilities from
the representation space by normalizing the given binary images and aligning
them rotationally in a pairwise manner. Thus, we are left with removing the pa-
rameterization variability of the level set functions. This step can also be thought
of as the registration process, where similar structures are matched together
across the given objects. To do this, we will utilize the notion of equivalence
classes. That is, we will define two level set functions, f1 and f2, as equivalent if
they are within a re-parameterization of each other. This provides us with the
following definition of an equivalence class: [q] = {(q ◦ γ)

√

Jγ |q ∈ L
2, γ ∈ Γ}.

Thus, we can define a parameterization-invariant distance between level set func-
tions by minimizing over the equivalence classes:

d([q1], [q2]) = inf
γ∈Γ

‖q1 − (q2, γ)‖. (2)

d([q1], [q2]) defines the parameterization-invariant (extrinsic) geodesic distance
between SRF representations of level set functions. We use it as a measure of
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similarity between planar objects that have arbitrary topologies and multiple
components.

In addition to computing the distance, we would also like to display the path
of deformation between the zero-levels of the registered level set functions. While
the geodesic path under the pullback metric on F is a natural choice to do this,
it is computationally expensive to compute [5]. Instead, we approximate these
deformations using linear interpolation paths. As can be seen in the experimental
results section, this does not seem to have any adverse effects. We note that the
quality of the metric and registration is very closely related to how natural the
deformations between the given objects are.

The computation of the distance in Equation 2 requires solving an optimiza-
tion problem over the re-parameterization group Γ . Kurtek et al. [31] outline a
gradient descent approach to do this and we summarize it here for convenience.
Begin by constructing a geodesic (straight line) between q1 and the current ele-
ment of [q2], call it r. If the geodesic is perpendicular to the equivalence class [q2],
then r is the optimally registered (and closest) element of [q2] to q1. If not, we
update r in the direction of the projection of the geodesic while staying within
[q2]. This is accomplished in three steps. First, define an orthonormal basis for
the tangent space Tγid

(Γ ) using products of adapted Fourier bases. One cannot
use the Fourier basis as given due to the fact that this vector field must be
tangential to the boundary of [0, 1]2. Then, use the differential of the mapping
φ(γ) = (q ◦ γ)

√

Jγ to find an update vector field b on Tγid
(Γ ). Compute an

infinitesimal update to the parameterization of r using γnew = γid + ǫb, ǫ > 0
and small, and compute the corresponding element of [q2] (a new version of r)
using the mapping φ. Repeat these steps until the geodesic is perpendicular to
[q2]. This procedure reduces the distance at each iteration. It is computationally
efficient but is not guaranteed to converge to the global solution. However, in
practice we found that it produces natural correspondences and a measure of
dissimilarity that outperforms the state-of-the-art.

Fig. 2 shows three examples of deformation paths between synthetic shapes
of arbitrary topology. For each example, we show the deformation field between
the level set functions (plotted as surfaces) and between their corresponding
zero-level set (highlighted in black), which corresponds to the boundaries of the
2D shapes of interest.

3 Experimental results

We demonstrate the performance of the proposed framework using two types of
results. First, we show several examples of computing deformation paths between
2D shapes that have fixed or varying topology and that may contain multiple
parts (Section 3.1). The visual quality of the deformation paths is an indication
of the quality of the computed correspondences. Next, we report experimental
results on the classification and retrieval of 2D shapes (Section 3.2). We use three
different data sets for evaluation, see Fig. 1:
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dinit(q1, q2) = 12.6893, d([q1], [q2]) = 7.7043 dinit(q1, q2) = 13.8117, d([q1], [q2]) = 9.7609

dinit(q1, q2) = 13.1331, d([q1], [q2]) = 6.9032 dinit(q1, q2) = 9.1611, d([q1], [q2]) = 4.8372

dinit(q1, q2) = 13.726, d([q1], [q2]) = 7.1463 dinit(q1, q2) = 7.1449, d([q1], [q2]) = 4.2948

Fig. 3. Deformation paths between shapes of the the same topology, with no internal
details.

Medical Imaging Data Set (Fig. 1(a)). We have manually extracted a set
of four subcortical structures (putamen, hippocampus, thalamus and caudate)
from 2D slices of 10 structural MRI images. Fig. 1(a) displays an example with
each of the subcortical structures labeled. There are two types of variation in
this data. The first is topological because in some images the structures are
represented by three closed curves while in others with four. The second type is
in the shape and the relative locations, rotations and scales of the structures.

2D Human sketches (Fig. 1(b)). Eitz et al. [8] provide a data set of 20, 000
objects sketched by humans. To demonstrate the performance of our approach,
we use a subset of 100 sketches evenly distributed over 10 shape categories. Sim-
ilar to the medical data set, the sketch data exhibit large topological variation
as well as variations in the locations, scales and rotations of the different compo-
nents of the objects. More importantly, most of the images in this data set are
composed of strokes, with no clear definition of the interior and exterior regions
of the sketched shapes.

SHREC07 watertight data set (Fig. 1(c)). This data set contains 400
three-dimensional objects evenly distributed into 20 classes [9]. For each of the
3D models, we generate a thumbnail image by rendering its frontal view into a
binary image of size 450× 600. Since the 3D data set contains complex shapes
with arbitrary topology and pose, the resulting 2D images are of arbitrary topol-
ogy. We use a subset of 100 images (the first five images of each class) in our
analysis.

3.1 Shape matching and comparison

First, we focus on shapes that have the same topology as shown in Figures 3, 4
and 5. In the first case, we compare shapes that can be represented by their
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dinit(q1, q2) = 8.9633, d([q1], [q2]) = 7.3158 dinit(q1, q2) = 7.3262, d([q1], [q2]) = 2.8244

dinit(q1, q2) = 7.9431, d([q1], [q2]) = 4.3158 dinit(q1, q2) = 11.2835, d([q1], [q2]) = 4.016

dinit(q1, q2) = 7.0126, d([q1], [q2]) = 3.8112 dinit(q1, q2) = 13.5649, d([q1], [q2]) = 5.6416

Fig. 4. Deformation paths between shapes of the same topology with internal details.

outer boundaries only. Fig. 3 shows several of such examples. Each row of the
figure is a deformation path between the most-left and the most-right shapes.
Note that the quality of the deformation is highly dependent on the quality of
the computed correspondences between the level set functions; any error in the
correspondences will result in distorted intermediate shapes. For each example,
we also show the computed initial distance dinit = ‖q1 − q2‖ (after rotational
alignment, prior to optimization over Γ ) and the computed parameterization-
invariant distance d (after optimization over Γ ) between the level set functions.
In all of these examples, we used the same scale for each data set making the
distances comparable.

Fig. 4 shows examples of deformation paths between shapes with the same
topology but of high genus, i.e. with internal details. Observe that the defor-
mations are very natural. It is important to note that the topology is preserved
along the deformation path.

Fig. 5 shows deformation paths between shapes of the same topology but that
contain several components. In each of these examples, we compare two synthetic
faces sketched by hand. Each face contains four components (corresponding to
different face parts). Observe that our approach is able to match these shapes
correctly and generate natural deformations. In all of the three examples, we
observe a decrease in the distance between shapes of approximately 40% due to
the optimization over Γ .

In Fig. 6, we compare planar objects that have different topologies. Figures 6-
(a) to (c) show a comparison between various brain structures. These shapes are
naturally similar, but they exhibit two major types of variation. The first is
topological because the structures are represented by two, three or four closed
curves. The second type is in shape and the relative locations, rotations and
scales of the structures. When we perform the optimization over Γ , the distance
between the left-most and the right-most shapes reduces from 12.52 to 6.18, 13.33
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dinit(q1, q2) = 12.8079, d([q1], [q2]) = 4.9344

dinit(q1, q2) = 14.1555, d([q1], [q2]) = 6.645

dinit(q1, q2) = 16.9586, d([q1], [q2]) = 8.9909

Fig. 5. Deformation paths between shapes of the same topology with multiple compo-
nents.

(a) dinit(q1, q2) = 12.526, d([q1], [q2]) = 6.1829

(b) dinit(q1, q2) = 13.3389, d([q1], [q2]) = 5.5952

(c) dinit(q1, q2) = 9.8801, d([q1], [q2]) = 5.3204

Fig. 6. Deformation paths between brain structures with multiple components and
small topological changes.

to 5.59, and 9.88 to 5.32 for the cases (a), (b) and (c) respectively. In particular,
observe how the topological change is carried in the intermediate shapes along
the deformation paths. More examples of complex topological variations are
shown in Fig. 7.

Finally, we compare in Fig. 8 the quality of the deformation paths that are
generated without optimization over Γ vs. the deformation paths obtained using
the full elastic metric, i.e. with optimization over Γ . We can clearly see that our
elastic metric provides natural deformations and thus it finds correct correspon-
dences. More examples are shown in the attached supplementary materials.

These examples show that our approach is able to handle shapes with arbi-
trary topology and with multiple structures. It is also able to compare shapes
that have different topologies, which is a significant deviation from previous
work [3, 4]. Furthermore, the presented examples clearly demonstrate that the
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dinit(q1, q2) = 11.0513, d([q1], [q2]) = 7.9946

dinit(q1, q2) = 11.0429, d([q1], [q2]) = 7.6311

dinit(q1, q2) = 14.4095, d([q1], [q2]) = 7.6357

Fig. 7. Deformation paths between shapes of different topologies.

Rigid alignment: dinit(q1, q2) = 16.5479 Elastic metric: d([q1], [q2]) = 7.2028

Rigid alignment: dinit(q1, q2) = 11.2835 Elastic metric: d([q1], [q2]) = 4.016

Fig. 8. Comparison between deformation paths obtained with rigid alignment and
with the elastic metric proposed in this paper. More examples are included in the
supplementary materials.

generated comparisons are natural and thus the computed distance is a good
measure of differences between these shapes.

3.2 Classification performance

To quantitatively evaluate the performance of the proposed metric, we consider
the classification of hand-written sketches [8] and 2D projections of the 3D mod-
els in SHREC07 [9] data set described above. For each set, we computed the
pairwise distances using the approach proposed in this paper and compared its
classification performance against six algorithms in the literature, namely: (1)
the rigid alignment defined as the Euclidean distance between rigidly-aligned
pairs of shapes (unlike the proposed elastic metric, this metric does not search
for the optimal re-parameterization of the level set functions), (2) The Hard
and Soft Histogram of Oriented Gradients (HOG-hard and HOG-soft) of Eitz
et al. [8], (3) the Modified Hausdorff distance [33], which is equivalent to the
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standard Hausdorff distance computed after normalizing the shapes for transla-
tion, scale and rotation, (4) the Inner Distance-based Shape Context (IDSC) [25],
which is a very popular descriptor used in the analysis of planar shapes undergo-
ing articulated motion, (5) the D2 shape distribution [34], and (6) the Gaussian
Euclidean Transform (GEDT) of the shape boundaries [34]. We use the leave-
one-out 1,3,5-nearest neighbor (LOO 1,3,5-NN) classifiers in all examples, where
the class is determined by a majority vote. Below, we discuss the classification
performance on each data set.

2D sketch data set [8]. We use a subset of 100 sketches evenly distributed
over 10 shape categories. Figure 1(b) shows a few examples from this data set.
For these 100 objects, we first compute their Euclidean distance transforms and
use the algorithm described in Section 2 to compute the pairwise distances.
The resulting LOO 1-NN classification rate was 85%, outperforming the best
state-of-the-art descriptor by approximately 13%, see Table 1. Note that HOG-
hard achieved a 65% LOO 1-NN classification rate while HOG-soft achieved a
72.0% classification rate. These two methods use supervised learning to build
the codebook. Our approach, which obtained 85.0% LOO 1-NN performance,
is completely unsupervised. The IDSC descriptor, which is extensively used for
the analysis of planar shapes undergoing articulated motion, achieved 25% LOO
1-NN classification rate, which is significantly below the proposed approach.
Finally, note that the proposed elastic metric significantly outperforms all of the
other methods when more neighbors are considered, and deteriorates much more
slowly.

The SHREC07 data set. We performed a similar evaluation on the SHREC07
data set and report the performance in Table 2. Again, our metric outperforms
the state-of-the-art by more than 5% on LOO 1-NN classification, except the
IDSC, which performed 3% better.

Comparison with the Inner Distance-based Shape Context (IDSC) [25].
IDSC is a very popular descriptor that has been used for the registration of pla-
nar shapes in the presence of articulated motion. When used with shapes that
have well defined interior regions, such as the SHREC07 data set, it slightly
outperforms the metric proposed in this paper, see Table 2. IDSC, however, fails
when used in the analysis of the 2D sketch data set as shown in Table 1. 2D
sketches are composed of strokes with large topological variations and without
clearly defined interior regions. Our approach outperformed all of the state-of-
the-art methods on this data set. Note also that unlike the IDSC, our approach is
invariant to all shape-preserving transformations including re-parameterization.

Computation time. The total computation time for comparing two objects is
approximately 51s. This can be improved by optimally finding rotations without
doing an exhaustive search as currently implemented.
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Hausdorff D2 GEDT HOG-hard HOG-soft Rigid align. IDSC Proposed

LOO-1 65.0% 49.0% 68.0% 65.0% 72.0% 70.0% 25.0% 85.0%

LOO-3 57.0% 46.0% 54.0% 56.0% 64.0% 73.0% 17.0% 76.0%

LOO-5 49.0% 38.0% 44.0% 48.0% 54.0% 67.0% 5.0% 73.0%

Table 1. LOO 1,3,5-NN classification on the 2D human sketch data set [8].

Hausdorff D2 GEDT HOG-hard Rigid align. IDSC Proposed

LOO-1 74.0% 40.0% 75.0% 61.0% 68.0% 83.0 80.0%

LOO-3 57.0% 24.0% 64.0% 37.0% 47.0% 79.0 71.0%

LOO-5 40.0% 12.0% 45.0% 20.0% 31.0% 69.0 56.0%

Table 2. LOO 1,3,5-NN classification on the SHREC07 data set.

4 Conclusions

We have proposed a novel framework for simultaneous registration and compar-
ison of planar objects with multiple components and differing topologies. To ac-
complish this, we use the distance function representation and a parameterization-
invariant framework for elastic shape analysis of surfaces. We validated our
framework on different types of examples, which included objects of the same
topology, high genus objects, objects with multiple components, and objects of
different topologies. The resulting natural deformations show the strength of our
method and the benefit of optimizing over the re-parameterization group when
generating such comparisons. We also used the distance function for two classi-
fication experiments. The results show that we outperform the current state-of-
the-art methods in the classification of 2D sketches as well as arbitrary planar
shapes. There are many directions for future work. First, we would like to com-
pute geodesics between distance functions using the metric proposed in [5]. This
will enable us to generate means and covariances of shapes with different topolo-
gies. Second, we plan to extend this framework to the analysis of 3D objects that
have arbitrary topology and multiple components.
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